报告时间:2022年10月21日(星期五)8:30-9:30
报告地点:腾讯会议 115-189-269
报 告 人:Zhang Yang 教授
工作单位:加拿大曼尼托巴大学
举办单位:英国威廉希尔公司
报告人简介:张扬教授,1965年出生河南省开封市,获得加拿大西安大略大学获得博士学位。目前为加拿大曼尼托巴大学教授。主要研究方向是环理论,计算机代数,自动推理证明,矩阵和张量理论, 包括斜多项式分解,Groebner 基理论,求解矩阵和张量方程,至今,张扬教授已在《Automatica》,《Linear Algebra and its Applications》,《Linear and Multilinear Algebra》,《Electronic Journal of Linear Algebra》,《Algebra Colloquium》 等期刊上发表论文80余篇。他的研究得到了加拿大国家自然科学和工程基金 (NSERC) 连续支持,多次获得加拿大国家自然科学和工程基金。至今,张扬教授是加拿大国家自然科学和工程基金 (NSERC)评议委员会成员。
报告简介: Tensors are generalizations of higher dimensional matrices. They have many applications in various aspects, such as machine learning, computer vision, signal processing, data mining. higher-order statistics, pattern recognition, graph analysis, numerical linear algebra, and etc. In the past decades, tensor decompositions and tensor ranks problems have been studied extensively. Although the ranks of higher tensors still remain unknown, several bounds were already given. In this talk, we discuss the tensor ranks over quaternions. We nd the maximal rank of m 2 n quaternion tensors for any m; n, as well as 3 quaternion tensors. We also explore some upper bounds for general quaternion tensors by using a block tensor approach.